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Analysis and Control Software
for Distributed Cooperative Systems

Impact
• Force Multiplier - Enables a single

operator to control 100s to 1000s of
distributed systems.

• Provably convergent control algorithms
ensure safe operations.

• Distributed controls provides fault
tolerance.

• Low communication bandwidth for covert
operations.

New Ideas
• Large-scale analysis and control of

distributive cooperative systems using
graph theory and variable structure
control.

• Self-organizing communication networks.

• Distributed optimization formulation of
tasking and control problems.

• Very large-scale system analysis using
statistical and continuum mechanics.

1 - Graph Theory/VSC

2 - Stat. Mechanics

3 - Self-org. Comm. 

4 - Dist. Optimization

5 - Cont. Mechanics

Schedule

8/99 9/00 9/01

Hardware Demos

Software Demos

Sandia National Laboratories:  John Feddema

9/02



Presentation Outline

• Stability analysis.

• How analysis applies to real problems.

• Implementation in progress.

• Proposed future work.



• Use state space models and graph theory to
– Determine strongly connected subsystems.

• Input/output reachable.
• Structurally observable/controllable.
• Connectively stable.

– Evaluate reconfigurable mobile communication
networks.

Communication/Navigation Network

1
2

3

45
6

7 8

9
10

11 12

1314

15

14

15

13
12

11

9

10
6

7

1
2

34

5

8



Stability Analysis
of Large Scale Systems

• Computing controllability and observability is
numerically difficult for large scale systems.
Instead, we compute
– Input Reachability => Structural Observability

– Output Reachability => Structural Controllability

– Vector Liapunov => Connective Stability



Large Scale Systems

• State Space Model of N interconnected subsystems:

    where

    and             are 1 or 0 (coupling or no coupling).

• Control feedback is added to system such that
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Large Scale Systems

• Interconnection Matrix is

                                  where

• Reachability Matrix is                                            if
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– Input reachable iff G has nonzero rows.
– Output reachable iff Η has nonzero rows.
– Structurally controllable if input reachable and no dilations
(independent control all state variables).
– Structurally observable if output reachable and no dilations.
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0=K



Large Scale System Stability

• Closed loop dynamics

• Connectively stable if                where
is an M-matrix (all leading principle minors must be
positive).   Variables          ,           must satisfy
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Large Scale System Stability

• Closed loop dynamics for linear systems

• Connectively stable if                is an M-matrix (all
leading principle minors must be positive) where
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Analysis of Example Problems

• Perimeter Surveillance

• Self-Healing Minefield

• Distributed Communication Navigation
Network
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Problem 1:  Spread out uniformly

Problem 2:  Spread out in specified pattern

Two Dynamic Models:
1.  Localization sample period = Communication sample period
2.  Localization sample period << Communication sample period



Perimeter Adjustment is 1D Problem



Self-Healing Minefield
is 1D Problem

Breach
Mobile
Land Mine

Breach
Vehicle
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Model 1 for Two
Strongly Connected Vehicles

T is the sample period of the position
feedback loop.  Assumes that position
updates are the same as communication
updates.
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Stability using Vector Liapunov
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System is connectively globally asymptotically
stable if matrix below is an M-matrix (leading
principle minors are positive).
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Model 1 Stable Regions for Multiple Vehicles



Model 1 Conclusion
• Stability depends on vehicle

responsiveness Kp, communication
sampling period T, and interaction gain γ.

• System goes unstable if communication
sampling period is too long and/or vehicle
responsiveness is too fast.

• Interaction gains can be used to contract
or spread out vehicles.

• The stability region reaches a limit for
large numbers of vehicles.



Two-Dimensional Problem:
Communication/Navigation

Network
Going into an unknown environment, and spreading out with uniform density.
Want to maintain communication between adjacent vehicles.

Base 1

Base 2



Initial State



Goal:  Communication/Navigation Network



2D Localization Algorithms
Investigated

• Law of Cosines

• Steepest Descent

• Conjugate Gradient

• Least Squares

• Kaczmarz Distributed Algorithm



Law of Cosines

2131312
2
13

2
12

2
23 cos2 θddddd −+=

1
2

3
23d

12d

13d

213θ

1̂x

1ŷ
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Steepest Descent Method
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Minefield Algorithm
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Swarming Behaviors Described
as an Optimization Problem
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Dispersion Simulations

Dispersion using position
of 3 nearest neighbors.

Dispersion in hallway.



Swarming Behaviors Described
as an Optimization Problem
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Meta-Level Behaviors such as:
• Dispersion  • Clustering
• Following  • Orbiting

can be mathematically described using this optimization
approach with different values of      .ijd

Most importantly, we can prove stability
and convergence of these solutions!!!



Gradient-Based Dispersion



Future Work

• Demonstrate communication/navigation
network with 20 Netbot vehicles.

• Add surveillance cameras to Netbots.

• Extend to a heterogeneous indoor/outdoor
communication/navigation network
consisting of RATLERs, Netbots, and
Millibots.

• Continue statistical and quantum
mechanics analysis for 1000s.



Heterogeneous Team


